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LIQUID CRYSTALS, 1991, VOL. 10, No. 4, 519-537 

Dielectric relaxation in polar nematic liquid crystals 

by YURII P. KALMYKOV 
Institute of Radioengineering and Electronics of the 

U.S.S.R. Academy of Sciences, K. Marx av. 18, GSP-3, 
Moscow 103907, U.S.S.R. 

(Received 28 August 1990; accepted 15 March 1991) 

The relationship between the complex dielectric permittivity tensor of a polar 
nematic liquid crystal and the autocorrelation matrix for the permanent dipole 
moment of a molecule is obtained. The theory is applicable to the whole frequency 
range which characterizes orientational relaxation in liquid crystals (up to - 5 THz). The models of rotational diffusion and extended rotational diffusion in a 
mean field nematic potential are used to evaluate the dielectric absorption and 
dispersion in nematics. 

1. Introduction 
Dielectric/far infrared (O-THz) spectroscopy is one of the techniques available to 

probe molecular reorientations in liquid crystals [l, 21. However, as for isotropic polar 
dielectrics, the amount of information about molecular reorientation depends, in 
principle, on the level of development of the molecular dielectric relaxation theory. 

In recent years the molecular theory of dielectric relaxation in highly polar isotropic 
liquid dielectrics has been developing. The important aspect of this is that the theory 
has taken into account intermolecular correlations explicitly (e.g. [3-71). On this basis 
molecular models which account for intermolecular correlations between dipolar 
molecules (rotational diffusion [3,7], three-variable theory [ 1,3,4], etc.) have been 
elaborated. The theory for nematic liquid crystals [l, 2,5] is not so advanced. In some 
cases radio/far infrared dielectric spectra of liquid crystals have been analysed in the 
framework of models of molecular reorientations in isotropic liquids [8,9]. However, 
such models are not able to explain the anisotropic properties of liquid crystal dielectric 
parameters. On the other hand there are a few molecular models of molecular 
reorientation in anisotropic dielectrics which are based on the rotational diffusion 
equation [lo-141. Unfortunately, these models are only applicable to the low 
frequency limit [l]. In addition, in many cases intermolecular interactions between 
dipolar molecules are not taken into account; this is strictly valid only for dilute 
solutions of polar molecules in non-polar solvents. 

In the present paper we elaborate a molecular theory of dielectric relaxation in 
polar nematic liquid crystals in the framework of another approach [5 ,  151. This 
approach, based on the memory function formalism [16], allows us to relate the 
complex dielectric permittivity tensor 

$(O) = &;Am) + i&:@), 

to the molecular dipole autocorrelation matrix taking into account intermolecular 
correlations between dipolar molecules via equilibrium correlation orientation 
parameters. 

0267-8292/91 S3QO 0 1991 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



520 Y. P. Kalmykov 

To evaluate the components of the molecular dipole autocorrelation matrix two 
models are used. These are the rotational diffusion and extended rotational diffusion in 
a mean field potential. (We use the word extended since the model in question may be 
considered as a generalization of the well-known extended diffusion (J-diffusion) model 
developed by Gordon [I].) In the mean field approximation it is assumed that every 
molecule interacts with a static potential U .  In spite of its limited sphere of 
applicability, the mean field approximation has clear physical interpretation and 
allows us to make quantitative estimates of liquid crystal dielectric parameters. The 
rotational diffusion model is only applicable to the low frequency range (ozf: < 1, where 
T: is the macroscopic orientational relaxation time). The model of extended rotational 
diffusion in a mean field potential [17,18] is an example of a model which may be used 
in the high frequency range (up to - 5 THz) as well. We examine a particular case of this 
model applying to liquid crystals, viz., the extended rotational diffusion in the Maier- 
Saupe potential [ 191 

u(e) = - u, cos* e, 
where U o  is a constant and 8 is the polar angle made by the molecule with the director. 
Note that the rotational diffusion in the Maier-Saupe potential is considered in 
[lo, 13,191. 

In Q 2 the general formula for the complex dielectric permittivity tensor @j(o) is 
presented. In § 3 the relationship between E$(o) and the tensor molecular dipole 
correlation function is obtained. Section 4 contains a discussion of the model of 
rotational diffusion in a mean field potential. The extended rotational diffusion model 
in the Maier-Saupe potential is considered in Q 5 where an analytical solution is given 
for the anisotropic case. 

2. Dielectric spectra and correlation functions 
With respect to a laboratory coordinate system ( x , y , z )  in which the director n 

defines the z direction, the dielectric permittivity tensor E;(O) is diagonal and has only 
two independent components, viz., E;~(o )  = E,*,(w) and &:(a) = E ~ ~ ( o )  = &,*,(A). Other 
components equal zero. In the zero wavevector limit, the components of the complex 
dielectric permittivity tensor 

&;(a)) = &@) + iei(w), 

of a polar nematic liquid crystal are given by [ 1,201 

where 

4:(d = (M,(O)M,(t)), (Y = I I ,  11, 
are the macroscopic autocorrelation functions of the parallel and perpendicular 
components of the dipole moment per unit volume M, the brackets ( ) indicate an 
equilibrium ensemble average, n& is the infrared refractive index and R,(w) is the 
internal field factor connecting the local and applied electric fields. The dipole moment 
M of an ensemble of N interacting dipolar molecules is defined as 

N 

Wt)= C Pi t ) ,  
i =  1 
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Dielectric relaxation in polar nematics 521 

where p is the dipole moment vector of the ith molecule. Hence 

For the model of an ellipsoidal cavity surrounded by an infinite dielectric continuum 
with the same complex permittivity tensor E;(O) the internal field factor R,(o) is given 
by c201 

where a,(w) are the components of the depolarization tensor which are defined as 

with 

a, are the semi-axes of the ellipsoidal cavity. Another equation for R,(o) may be 
obtained from equation (28) of [20] but only by making the unrealistic assumption that 
the permittivity tensor E:(w) for the material surrounding the cavity is frequency 
independent and equal to the static tensor E;(O) [20]. In this case we have 

According to these equations even when the macroscopic autocorrelation functions are 
known it is still not possible to calculate the complex permittivity because the 
depolarization tensor depends on the sample cavity dimensions which are arbitrary. 
This dependence on the geometry of the sample is an unsatisfactory feature of the 
analysis but one which also occurs for isotropic media [20]. However, as pointed out in 
[20] it does not present a major problem in the case under consideration when the 
cavity contains many molecules for then its shape is immaterial and it is expedient to 
choose a spherical sample since the depolarization tensor is independent of its size. 

Edwards and Madden [14] have criticized the approach of calculating the 
permittivity tensor based on equation (1) from the point of view that when the cavity 
concept is used in a theory it is very difficult to see how dipole-dipole correlations can 
be used systematically to relate the frequency dependence of the permittivity to 
reorientations of single molecules. In [ 141 they have generalized for the anisotropic 
case the Sullivan and Deutch theory [6]  of dielectric relaxation in isotropic polar 
media. In this theory neither a cavity nor an internal field factor are used explicitly. 
However, as we shall show the theory of Edwards and Madden predicts actually the 
same result as given by equation (1) for the internal field factor R,(w) defined by 
equation (4) with (n’,)’= 1 (in [14] a system of non-polarizable molecules was 
considered). In the present paper results will be given in the form which is consistent 
with both approaches. 

Note that only low frequency (relaxational) molecular processes are displayed 
clearly in the frequency dependence of E:(w), whereas it is very difficult to obtain high 
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522 Y. P. Kalmykov 

frequency behaviour of liquid crystals. In the high frequency region it is more suitable 
to analyse the absorption coefficient [l] 

is the refractive index and c is the speed of light. 

3. Relationship between e:(w) and the molecular dipole correlation function 
For any correlation function 

4aV) = (NO)A( t ) ) ,  
of a dynamic variable A@), the function c$;(t) obeys the equation [16] 

Sb d 
dt 
-d ; ( t )=  - K;(t-t’)dy(t’)dt’, ( y =  11, I), 

where 

KFJ(t) = ~ ~ , ( O ) l Q ,  exp (- iQ,iQ,t)Q,l~,(oD 
(M,(O)IM,(O)) 

9 

is the memory function of the correlation function 4;(‘(t) 
d N 

i =  1 
M,(O) = 1 PW)’  U,(O) = M,(t)lt = 0,  

t is the Liouville operator 

IM,(t)) = exp (- i ~ t ) l ~ , ( ~ ) ) ,  Q, = f -By, 
and 

By= IM,(O))(M,(O)IM,(O))- l(My(o)l, 
is the projection operator which effects the variables A and B according to the rule 

( A  I PYl B )  = ( A  I , (O)) (M,(O)I M ,(O)) - < M ,(O)l B ) ’ 
where (AIB) denotes the scalar product of the two vectors ( A ]  and IB) in the Hilbert 
space of dynamic variables and (AIB) = ( A B )  by definition [16]. 

The one sided Fourier transform of equation (6) yields 
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Dielectric relaxation in polar nematics 523 

Substituting this equation into equation (1) we obtain 

This equation yields the relationship between components of the complex permittivity 
E?(o) and memory function spectrum I?r(o) tensor. As shown in Appendix A equation 
(9) with R,(o) defined by equation (4) can be simplified to 

where 

For non-polarizable molecules (i.e. n', = 1) this equation coincides with that predicted 
by the theory of Edwards and Madden [14]. 

The memory function Ky(t) has the structure of the correlation function of the 
variable &Zy(t), however there are some differences. Namely, only the part of h?,(O) 
orthogonal to M,(O), viz. Qyl&fy(0)), enters into the definition 1 " "  of the memory function 
K:(t) (see equation (9)). In addition, the dynamic operator Q,LQ, is the projection of 
the Liouville operator I? corresponding to the fluctuations " " "  of M,(O). Since slow 
fluctuations of M y  are excluded from the dynamic operator Q,LQy which determines 
the relaxation of the memory function Ky(t), the latter decays very rapidly compared to 
4Jyw C161. 

Since (M,(O)&f ,(O)) = 0 [ 161 and 

where Q ( t )  is the angular velocity of ith molecule, it can be shown that the memory 
functions Kf((t) and Ky(t) are represented as the sums of the terms 

c&t)= C I'(CQ(0) x ~i(o)I  11 Ca,(tp) x ~,(tp)I 11 ), (12) 

respectively, where C 11 and C1 are constants, the subscript p on the time variable t 
indicates the projected time dependence specified by the relation [3] 

Imp)) =exp (- iQyLQyt)I4O)). 

Since the dynamic angular velocity correlations of different molecules are absent at 
t = 0 at equilibrium, i.e. (fimi(O)fim,(0)) = 0 if i # j  (rn = x, y, z), the contribution of terms 
Cyt) with i # j  to the memory function R:(t) is probably much smaller than that of 
terms with i = j  at an arbitrary time t. It is frequently argued that dynamic angular 
velocity correlations between different molecules may be ignored in isotropic liquids 
(e.g. [21,22]). Experimental evidence that these correlations between different mole- 
cules in liquid crystals are small has been given by light scattering experiments [23]. 
Gierke and Flygare [23] have shown that the dynamic angular velocity correlations 
are very small for second rank properties. However, since they give the sufficient 
condition we assume that dynamic correlations are also small for first rank properties. 
This assumption can also be justified theoretically for isotropic dielectrics [3]. 
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524 Y. P. Kalmykov 

Thus, neglecting the dynamic angular velocity correlations in equation (9) and 
taking into consideration that slow fluctuations of M ,  are excluded from the dynamic 
operator &,e&,, we obtain from the exact equations (6) and (7) the following 
approximate equations for the macroscopic correlation function #(t) and the memory 
function KF(t) 

and 

Kf;'(t)=g, 'K;( t ) .  (15) 

Here K;(t)  is the memory function of the normalized molecular dipole correlation 
function 

C,(t) = ( P m P K t ) > / ( P m 2  >, 
the memory function K;((t) is also defined by equation (7) where the macroscopic 
moment M ,  is everywhere changed to the molecular dipole moment p: 

is the static equilibrium orientational correlation factor (an analogue of the Kirkwood 
g factor in isotropic liquids) characterizing the intermolecular interactions and the 
iocal structure of a liquid crystal. 

The functions Cy(t)  and K",(t) and their one sided Fourier transforms c",(o) and 
K"",(w) are related by equations which are analogous to equations (6) and (8) 

Sb d 
dt  
-C,(t)= - K",t-t')C,(t')dt', 

and 
Cr(W)= l/[-iw+Rs,(o)]. 

One sided Fourier transformation of equation (14) and combination of the result 
obtained with equations (8) and (18) gives 

Since 
4F(O) = s,(PY(o)2>N 

we can obtain from equations (1) and (19) that 

where 
G, = 4~g,(p;(O)~)N/kT. 

For a rod-like molecule (~$0)~) are equal to [19] 

(pLj'(0)2)=p2[1-(1 -3cos2p)s]/3, 
(p;(o)2) = p 2 [  1 + (1 - 3 cos2 p)s/2]/3, 
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Dielectric relaxation in polar nematics 525 

where p is the dipole moment of the molecule, S = (3(cos2 8 )  - 1)/2 is the usual order 
parameter, B and 8 are the angles between the molecular axis and vectors pi and n 
respectively. The dipole moment p may be estimated from [19] 

P = ~ ~ ~ ( f i , ) ~  + 2 ~ 3 ,  
where p o  is the gas phase dipole moment and 

= (n i2  + 2ni2)/3.  

(The electric field induced moment caused by time dependent collisional motions is 
assumed to be much smaller than the permanent moment). 

In the low w limit (i.e. o = 0) equation (20) coincides precisely with the Kirkwood- 
Frohlich equation for the anisotropic case [19] 

(22) 
CE:(O) - ( n 9 2 1 { q ( o ) -  a,(O)b;F(O) -(nY,)21) -471(PY(0)2>syN - 

E?(O)(ri2, + 2)2 9kT 

In the limit of high frequencies, i.e. o + m ,  when c,(w) is expanded as [16] 

and the internal field factor R(o) tends to unity, equation (20) becomes 

Thus, in this limit the dielectric permittivity E;F(o) does not depend on the correlation 
parameter gy. 

From equation (23) and one of the Kramers-Kronig relations 

which leads to the following high frequency asymptotic expansion 

we obtain the sum rules 

and 

The average (pi(0) jii(0)) in this equation may now be evaluated by differentiating the 
motion equation (11) and taking into account the known equation of rigid body 
rotation 

(26) 
- d  
dt 

I - Q ( t )  = N i t ) ,  
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526 Y. P. Kalmykov 

where i i s  the inertia tensor and Ni(t) is the torque acting on the ith molecule. We find 

d 2  
dt  7 + Wt)pi(t) - ni(t)(pi(t)ni(t)) 

= f- Cp2Ni(t) - ~i(t)(iiXt)NAt))I- (27) 

(28) 

Thus 

(pi(O)iii(O)> = - p 2 ( Q t ( o ) >  + ((pi(o)Q(o))2>* 

Equation (20) can be used to evaluate the dielectric permittivity spectra E?(O) in the CL 
THz frequency range provided the molecular correlation function spectra c",(u) and 
correlation factors gy are known. Unfortunately, exact calculations of the spectra c",(o) 
and gy factors are very difficult tasks and can be carried out only for model systems by 
computer simulation (since the computer simulation method allows us to calculate the 
spectra c",(w) and &"(o) and the factors g, independently it would be interesting to 
make use of computer experiments in order to test the validity of equation (19)). 
However, in order to evaluate the spectra E:(u) we can estimate the values of gy from the 
Kirkwood-Frohlich equation (22) and make use of experimental spectra c",(o) 
obtained from infrared rotation/vibration absorption spectra. Furthermore, we may 
hope that models of molecular reorientation which give simple spectra c",(o) will prove 
to be applicable to semiquantitative evaluations of spectra E;(O). 

As a first example let us consider the well-known rotational diffusion model in a 
mean field potential. 

4. Rotational diffusion in a mean field potential 
For known versions of this model (e.g. [10-13]) the molecular dipole correlation 

functions C,(t) and their spectra C",(o) may be written as 

and 
NY 

c",(o) = c a;?;/( 1 - iwz;), 
n = l  

where 7; are the relaxation times 

n =  1 

(the values of NII and N ,  depend on the shape of the mean field potential). Substitution 
of this equation into (19) yields 

NY . NY 

n = l  k(k#n)  
$ : m y  1 43; n (1 - i w 4  

n (1 - iwzi) + io(1 - g,) 1 a;?; n (1 - iw?:) 
(31) 6y(u) = N v  NY N Y  

n = 1  n = l  k(k#n)  

Decomposing the right hand side of this equation into simple fractions, we find 
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Dielectric relaxation in polar nematics 527 

or in the time domain 
NY 

n = l  
cb!(t) = #;(o) c b; exp ( - t/~’,Y), 

where (zf)-’ are the roots of the following equation of degree N ,  
NY N N 

J?Ny(X)= n [(z~)-’-X]+x(l-g,) 2 a: fl [(z:)-’-X]=o, (33) 
n = l  n = l  k ( k f n )  

the coefficients b: are functions of g,, u; and z;(m = 1 . .  . N,)  and satisfy the condition 

Inserting this equation into equation (20) we obtain 

For example, let us consider the cases when N ,  = 1 and N ,  = 2. If N ,  = 1 we have 

(35) - -gyzyl and b:=a:; 

For R ,  given by equation (4) for the case of n’, = 1 equations (34) and (35) lead to the 
same results as those predicted by the theory of Edwards and Madden [14] if it is 
applied to the diffusion model with the same assumptions. 

If N ,  = 2 the values of (zi7)- are equal to the roots of the square equation P2(x) = 0 
(33) and are given by 

(z?, 2)- = [ A ,  t B,1/2gyzy1z$, (36) 
where 

A ,  = aiz: + a:z$ + gy(a:z: + a$z$), 

and 

B,  = ( A t  - 4g,T1T,)”’. 

The coefficients b, are determined from the following system of equations 

subject to equation (36). The result is 

b,  = -g,(a:z; +aqz$)B;l-(C,- 1)-1, 

b, = g,(a:z: + a$z$)B; + C,(C, - 1) - 1, 

(38) 

(39) 
where 

C ,  = ( A ,  - B,)/4g,~Xz$. 

Unfortunately, the rotational diffusion model is only applicable to the low frequency 
range ( m y  < 1). As an example of a model which may be used in the high frequency 
range (up to - 5 THz) as well, we consider the extended rotational diffusion in the 
Maier-Saupe potential [lo, 13,211 

u(e) = - u, cos2 e, (40) 
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528 Y. P. Kalmykov 

where U ,  = 3AS/2Vz, A is a constant, S is the order parameter and V is the molar 
volume. The model of extended diffusion in the potential U(0)  given by equation (40) 
was proposed and simulated numerically for the isotropic case in [24]. We now give the 
analytical solution for the anisotropic case. 

5. Extended rotational diffusion in the Maier-Saupe potential 
This model has been discussed in detail elsewhere [17,24]. Here only a brief 

description of the model is given. It is assumed that a classical rigid rotator, whose 
permanent dipole moment is p and moment of inertia i s  I ,  rotates in the potential given 
by equation (40). Rotation of the dipole is interrupted by instantaneous collisions, i.e. 
the duration of collisions is assumed to be much smaller than the average time between 
collisions, 7. The collisions take place at random times governed by a Poisson law and 
randomize both the magnitude and direction of the angular velocity a, the random 
values of S2 being governed by a Boltzmann law. It is also assumed that collisions do 
not change the orientation of a rotator in space. In this version of the model we 
introduce two adjustable parameters z and U ,  which are in close relation to the 
molecular dynamics of its physical meaning and hence they may be considered as 
quantitative characteristics of molecular reorientations in liquid crystals. 

In the framework of the memory function approach the model under consideration 
may be formulated as follows. Let us introduce the memory function 

K;(t) = K',(t) exp (- t / z ) ,  (41) 
where K',(t) is the memory function corresponding to the correlation function C;(t)  for 
collisionless rotation of a dipole in the potential U(0). The functions K',(t) and C;(t) 
are related to each other by 

Sb d 
dt  
-C;(t)= - K',(t- t')C',((t')dt'. 

By means of one sided Fourier transforms the system of equations (17), (41) and (42) can 
be easily solved 

Exact formulas for the Fourier-Laplace transforms c";,(o + i/z) and c";(o + i / z )  for 
collisionless rotation of a dipole in the Maier-Saupe potential have been derived in 
[17]. Equations for c"f,(o + i/z) and c";(w + i/z) are given in Appendix B. 

The real, ~' (o) ,  and imaginary, ~"(o), parts of the normalized complex polarizability 

x(w) = 1 + iWc",(W), 

- 1 + (iw - l /z)q,(o + i/z) 
1 - P7(o + i /z ) /z  

- ' 

and the function qox"(o), which corresponds approximately to the absorption 
coefficient ~ ( o )  given by equation (7), are shown in figures 1 and 2 for different values of 
the model parameters z and pz  = U,/kT. Substituting c",(w) from equation (43) into 
equation (19) we can obtain 
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Dielectric relaxation in polar nematics 529 

"t 

Figure 1. The real, x',,(o), and imaginary, xi(w), parts of the normalized complex polarizability 
and qoxi(w) as functions of wq for different values of the model parameters p2 and 
q / z  : q / z  = 0.5 and p2 = 0 (curves 1); p2 = 1 (curves 2); p2 = 2 (curves 3); p2 = 2 and q / t  = 01  
(curves 4); q / z  = 0.4 (curves 5); q / z  = 1 (curves 6). 

The frequency dependencies Re {@(o)} given by equation (44) are usually lorentzian 
with a half-width =(z;)-', where 

is the macroscopic dipole moment relaxation time, and with a prominence on the high 
frequency wing of the spectra. At some values of the model parameters z and U,, this 
prominence may be displayed as a separate maximum which is due to librations of 
molecules. 

Now using equations (I) and (44) we can obtain 
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530 Y. P. Kalmykov 

Figure 2. The real, x;(o), and imaginary, x;(o), parts of the normalized complex polarizability 
and qwx';(o) as functions of wq for different values of the model parameters pz and 
q / z  : q / z  =0.5 and p2 =O (curves 1); p2 = 1 (curves 2); p 2  = 2 (curves 3); p2 = 2 and q/r =0.1 
(curves 4); q/z  = 0.4 (curves 5); q / z  = 1 (curves 6). 

where 

and 

Notice some important properties of the model in question. 
(i) In the low frequency limit (ox:-= 1) equation (46) may be reduced to 

where T: is given by equation (45). If collisions are frequent enough (i.e. q / z  >> 1, where 
=(2kT/1)"' is the average thermal angular velocity), then taking into account that 

C;(z) has the following asymptotic expansion 
'7, 

c";(z) = i/z - iC;(0)/z3 + o(z- 7, z--r 00, 
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Dielectric relaxation in polar nematics 

where 

from equation (45) we can obtain 

53 1 

(48) 

Equations (48) for tf",O), which are defined as 

q o >  = (lldo)ii,(o)>/(ll,(o)2), 

were obtained with the help of equations (B 2) and (B 3) in Appendix B. For the case of 
p 2  >> 1 equations (49) are simplified to 

z';I = 911 2V2P2h 7; = 9112/P2~, 
while in the opposite limit (p2<< 1) 

Tf=gI,Vv +2P2/5)/7' z':=9112(1 -P2/5)/Z. (51) 

As seen from equations (50) and (51) with an increase in the potential barrier p 2  the 
relaxation time zf is enhanced while the relaxation time z? is decreased. It can be shown 
that such behaviour of 7': is valid for arbitrary values of q /z  as well. 

(ii) In the absence of the potential (i.e. in the limit Uo-+O) the results obtained 
coincide precisely with those predicted by the J-diffusion model [18]. 

(iii) The sum rules from equations (24) and (25) become 

and 

47c2p2N 
&E'~(O)+~E;(U)] do=- s: 31 * 

(54) 

It is of importance that for the average dielectric loss ( E ~ ( W )  + 2~;(w))/3 the integral 
absorption does not depend on the potential magnitude Uo and (explicitly) temperature 
and coincides precisely with the sum rule of Gordon [l]. In the high barrier limit 
(p2>> 1) the sum rules from equations (52) and (53) are simplified to 

Within the framework of the model under consideration we can account for the 
specific features of dielectric spectra of nematic liquid crystals at low (radio/microwave) 
frequencies and in the far infrared range. 

At  low frequencies the model describes the relaxation (Debye) spectrum. In such a 
case the results from equations (49H51) are in qualitative agreement with the available 
experimental data (e.g. [19]) and with theoretical estimates [lo, 131, from which it 
follows that the relaxation time z t  increases and 7': decreases in nematic liquid crystals 
as compared to the relaxation time in the isotropic phase. The essential difference 
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532 Y. P. Kalmykov 

between the theories [lo, 131 is that for the model in question the relaxation times 
depend on the microscopic parameters z and U ,  which are closely associated with 
molecular dynamics and the predicted equations (49H51) contain the effects of the 
orientational dipoledipole correlations as well as those dynamical effects discussed in 
[lo, 131; it is in agreement with the theory of Edwards and Madden [14]. In the far 
infrared range, on the basis of the model considered, we can also reproduce the 
librational absorption band (Poley absorption) and account for the excess absorption; 
i.e. the excess of the intensity of this band over the Debye plateau [l]. Moreover the 
model allows us to explain the features of the polarized spectra [25,26]: the increase in 
absorption for the case E l n ( y  = I) and the decrease in absorption for the case 
Elln(y = 11) compared to the isotropic phase (see equations (55)). Physically this is due to 
the fact that for Elln the charges of a molecular dipole are moving for most of the time 
perpendicularly to the field E(t) and hence absorb the electromagnetic wave energy 
poorly, whereas at E l n  these charges move mostly in the direction of the field E and 
hence interact effectively with it. This result is in agreement with available experimental 
data (e.g. [25,26]). 

The sum rules from equations (52H55) can be used to evaluate the magnitude of 
absorption due to variable dipole moments that are induced by the nearest 
environment and collisions of molecules [ 11. Just as for isotropic liquids, the magnitude 
of the induced absorption in liquid crystals can be estimated from the difference A 
= Ifexp - ntheor, where nlheor is the theoretical value of the corresponding sum rule and 
nexp is the experimentally measured magnitude of the integrated absorption intensity. 

The use of the elaborated theory in more careful comparisons with experimental 
data and the generalization of the model for the case of an arbitrary direction of the 
dipole moment with the long axis of a molecule will be investigated in subsequent work. 

I wish to thank Professors V. I. Gaiduk and 0. V. Betsky for their interest in the 
present work. 

Appendix A 
For the internal field factor R,(o) given by equation (4) we can make a further 

transformation of equation (9). Indeed we have from equation (4) and (9) 

Taking into account that according to equations (1) and (3) or equation (A 1) the 
dielectric constant tensor ey*(O) is given by 

(A 2) 
C&:(o)-(n',)21{&:(o)- Q,(O":(0)-(m21) -47WqO) -- 

&:(O) kT ' 

we obtain from equation (A 1) 

or 
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Dielectric relaxation in polar nematics 533 

Algebraic transformations of equation (A 4) lead to I-'. (A 5 )  
ico.$(O) 

:(M CEy*(W) - &:(o)la,(o) + Ey*(O)) 

Taking into consideration equation (A 2) we can rearrange equation (A 5 )  as 

1 
(A 6)  

E:(4 - (n',)' - 
Ey*(O) - (n',)' - 1 - iws,(w)[&:(o) - (n',)'] ' 

where 

For the case of non-polarizable molecules (i.e. n', = 1) equations (A 6)  and (A 7) coincide 
with those predicted by the theory of Edwards and Madden [14]; the difference is that 
in [14] another definition for the memory function KY(t) was used. 

Appendix B 
To describe the orientation of a dipole let us introduce the polar angles 8,4, where 8 

is measured from the z axis. The Fourier-Laplace transforms of the molecular dipole 
correlation functions C',(t) for a collisionless rotating dipole in the Maier-Saupe 
potential from equation (40) are given by 

where p l , ( t )  = p cos O(t) and p l ( t )  = p sin 8(t) cos 4 ( t )  are determined by solving equation 
(27) which in the case under consideration is reduced to the following non-linear 
equations of motion 

Here the energy 

is a constant of the motion, R is the angular velocity of the dipole 

pe  = 18 and p+ = Zq5 sin' 0, 

are the angular momenta canonically conjugated to the angles O and 4 respectively, the 
brackets ((. . .)) designate an ensemble average 

((. . .)> = C - 1: 1: 1; sm (. . .) exp ( - H / k  T )  d W )  d W )  dpe(0) dp,(O), (B 4) 
- -m  

exp (- x') dx /p ,  p2 = Uo/kT.  
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534 Y. P. Kalmykov 

For further treatment it is convenient to make use of the normalized variables 

t' = t /q ,  z = (O + i / ~ ) q ,  u#) = pY(t) /p ,  h = H/kT, 

where q =(1/2kT)"'. Taking into account that ps  is aconstant of the motion, we obtain 
from equation (B 2) after integration 

where r2 = p:/2IkT. The Fourier-Laplace transforms c;(o + i/z) can be calculated by 
the same general mathematical method that was used in [27,28] to evaluate the 
Fourier-Laplace transform of the orientational autocorrelation function for a system 
of free asymmetric-top molecules. 

The solution of equation (B 5 )  with initial condition ull(0) = cos O(0) can be expressed 
in terms of the jacobian doubly periodic functions dn(ulm) and cn(u1rn) [29] 

,:Iz dn (slkz), k < 1, 
uldt')= { eliz cn(kslk-'), k >  1, 

where 

s = pe:/'t' + <, kZ = (ez -e1) /e2,  

[(xz - el)(ez - x2)] - ' I 2  dx, 

el and e2 are the roots of the square equation (h+p2x)(1 - x ) - r 2  =O 

coswo) f e$12 

5 = e:/z 

The inequalities k < 1 and k > 1 are valid in two regions of physically possible variations 
of the variables h and r. On the {h , r }  plane these regions are determined by the 
inequalities 

(2plrl- p 2 )  < h < r2 and h > r2. 

The solution from equation (A 6) describes librations of a dipole in the potential wells 
(in the vicinity of O = 0 and O = n) while the solution from equation (B 7) corresponds to 
rotation hindered by the potential. 

In order to evaluate the integrals in equations (B 1) and (B 4) we introduce the 
variables { t, 4, h, l }  instead of {O,4,  pe, p s } ;  the jacobian of the transformation of the 
variables is given by 

IkT 
pe:/' * 

- -- 

Then we use the following Fourier series expansions of the elliptic functions cn (ulrn) 
and dn(u1m) (see [30]) 

n(n + 1 /2)u cos 
' cn (ulrn) = 271 f q(m)"+1/2 m'~2K(m) , ,=O 1 +q(m)'"+' 
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Dielectric relaxation in polar nematics 

nnu 
cos - n 2n dm)” dn(uJm)=- +- f 

2K(m) K(m) n = l  1 +q(m)’” K(m)’ 

where 

d m )  = exp C - nK(1- m)/K(m)l, 
K(m) is the complete elliptic integral of the first kind C29). The analytical integration 
over 4, t and t’ in equation (B 1) taking into account equations (B 4HB 10) and after 
tedious algebra leads to 

( h + p 2 ) / 2 p  ( h + p 2 ) / 2 p  

s ; ( m + i l ~ ) = ~ - { [  Z - P 2  So + [ z  1 h1/2 ] n =  f 1 Czn(zlk2)dhdr~ 

where 

is the Dawson integral [29]. The integration over h and r is calculated numerically. 
There are two ways to find ul(t’). The first one is to solve equation‘ (B 3) directly 

which is reduced to the Lambe equations [31] 

d 2  p uL(s) = [A + n(n + 1)k2 sn2 (slk2)]ul(s), 

u (ks)=[Ak-’+n(n+ l)k-’sn2(kslk-’)]u,(ks), ( k >  l), d’ 
d(ks)2 

where n =  1 and A =(h+2e,pz)/e2p2. The second way is to express u&’) via u,,(t ’ )  given 
by equations (A 5) and (A 6) and &(t’); the latter can be found from the constant of 
motion pJ0)  = &(t) sin’ O(t).  We find easily that 

Let us make use of the second way. For k <  1 we have 

1 -e2 dn’ dx (xlk’) 1 ’ #&‘)=[I -e2dn2(slk’)]’/’cos 

or 

ul(t’)=(l -ez)[l -k2 sn’ (ialk’) sn’ (slk2)]”’ 

r dx 
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536 Y. P. Kalmykov 

where sn2 (ialk2)= ez/(ez - 1), sn(ulm) is the jacobian elliptic function [29]. Using 
known formulas [29,30] 

@(u+a)O(u-a) 
@(u)2@(a)2 ’ 1 - m sn2 (alm) sn2 (ulm) = @’(O) 

@(a) 1 O(u-a) 
-+-ln- 

1 -m sn2 (alm) snz (xlm) cn @(a) 2 O(u + a) 
d x  

= u +  

@’(a) H’(a) . cn (alm) dn (alm) 
@(a) - ~ ( a )  ’ sn(alm) 

where @(u) and H(u) are the 0 functions [29], the prime ’ designates differentiation with 
respect to a, we can express ul(t’) as 

’ 

(I -ez)’/2@(0) { 
2@(ia) 

+ exp { - i[+(O) +At’]} 

uJt‘) = 

@(s-ia) [ @ ( ~ + i ~ ) ] ~ ” )  
O(s) O((-iu) 9 

where A = ipe:/’H’(ia)/H(ia), the parameter a is given by 

a=F(arctg(Isn(ialk2)1)11 - k2), (B 15) 
F(alm) is the incomplete elliptic integral of the first kind [29]. 

For the case k > l  the expression for ul(t) has the same form as that given by 
equation (B 14) with the only difference, namely the parameters k Z ,  A, s and 5 must be 
everywhere replaced by k-’ ,  kA, ks and k t  respectively and the parameter a must be 
determined from the equation sn2 (ialk-’) = (ez - el)/(ez - 1) which has the solution 
given by equation (B 15). 

Further calculations can be carried out as described. Namely, using the known 
Fourier series expansion (see [30]) 

O(u+a) nH(a) fl=m exp [innu/K(m)] 
(B 16) -- 

1’ 7l 
sin {- [a  + 2inK( 1 - m)] 

c @(u) 2K(m)H’(O) n =  - m 
- 

2K(m) 
and integrating analytically over <, 4 and t‘, we can obtain 

where 

ir/m:/2 exp(-h-p2)p2[F(p)(2p2 + I)-pI-’ 
S,(ulm) = 

The integrations over r and k remain numerical. As for asymmetric top molecules 
[27,28] the final results given by equations (B 11) and (B 17) have the form of a very 
rapidly converging series of double integrals that is the consequence of the very rapidly 
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Dielectric relaxation in polar nematics 537 

converging series from equations (B9), (B 10) and (B 16) in all cases, except when 
moduluses k and k -  ' are very near unity. These results are exact and are convenient for 
numerical calculations. 

I t  is of importance to notice that in the absence of the potential U(0) equations (B 11) 
and (B 17) are reduced to 

where E,(x)  is the integral exponential function [29], that is in full agreement with the 
result of the free rotation model [18]. 
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